25th HumanTech Paper Award

Learning to Schedule Communication in Multi-agent Reinforcement Learning

2019.1.22

Wan Ju Kang 강완주

Inducing Cooperation among Multiple Agents

- Reinforcement Learning (RL) can model many real-world tasks
 - *e.g.*, drone control for human tracking
- Some multi-agent extensions still remain unconquered
 - Inducing cooperation is non-trivial
 - *e.g.*, cooperative search and rescue robots
- Want to better coordinate multiple agents
 - By means of inter-agent communication

Single-agent RL

Multi-agent RL

Difficulties in Training Communicators

Bandwidth constraint

- Need for efficient exchange of succinct information
- *e.g.*, total capacity of the channel is 100Mbps
- What messages should be sent over the limited bandwidth?

Medium access contention

- Need for efficient allocation of channel resource
- *e.g.*, only one agent may access the channel at a time
- Who should be given access to the channel and when?

Agent B is sending a message to Agent C by accessing the channel

• First study to jointly consider both issues

Timeline of Related Work

*Communication constraints

- Limited bandwidth
- Medium contention

2019

SchedNet solves MARL tasks by inducing cooperation in a distributed manner as the first study to address both communication constraints*

SchedNet trains agents to learn to gauge the importance of their observation

Communication and Scheduling

- Bandwidth Constraint → Encoding and Decoding
- Medium Contention → Scheduling
- Effective communicators
 - Know what to send and when to send it
 - e.g., a scenario where three agents must communicate over a 100Mbps channel that allows only one access at a time

Time t (s)	0	1	2	3
Scheduled agent	В	A	В	A

SchedNet: Centralized Training

- Centralized Training and Distributed Execution
 - Allows for the learning of <u>decentralized policies</u>, in a <u>centralized manner</u> multiple actors single critic
 - Popularized in recent works for its scalability and stability in training

SchedNet: Distributed Execution

- Scheduling Weight Generator
 - Gauges the importance of observation
 - Large weight raises the chance of accessing the channel
 - e.g., Wi-Fi connected devices could be made capable of intelligently accessing the channel
- Encoder
 - Given some observation, compresses it succinctly
- Action Selector
 - Given observation and message from other agent/s, select an action

Evaluation Setup

- Predator-prey
 - Multiple predators attempt to catch a randomly moving prey
 - Terminate when the prey is within the observation horizon of all the agents

The PP task (left) and its terminating condition (right)

Evaluation Results

- Baselines
 - COMA no inter-agent communication
 - IDQN independently trained via Q-learning
 - FC full communication allowed
 - RR round-robin scheduling
- SchedNet outperforms most baselines, except
 - DIAL, which ignores medium contention issues and allows all agents to access the channel

Demonstration

- Blue predators trained for 750k steps
- Orange prey moving according to a uniformly random distribution
- Scheduled predators are circled
 - Messages are transmitted to all other predators
- Predators chase the prey and eventually surround it

Summary and Remarks

- Proposed a new MARL training methodology
- Train multiple agents to take cooperative actions
 - By exchanging succinct information

Action Selector

Weight Generator

• By learning to determine in a distributed manner when to access the channel, based on weights computed to measure the importance of the observations

Message

Encoder

Accepted at ICLR 2019

Thank you

Appendix

Coupling of Scheduling and Encoding

- How beneficial was the joint optimization of scheduling and encoding?
- With a pre-trained encoder, agents took a longer time to complete the given task

Average normalized number of steps taken to complete the PP task

FC	SchedNet	Schedule w/	
	-Top(1)	auto-encoder	
1	2.030	3.408	

^{*}Lower is better

Scheduling in the PP task

- Agent 1 has the widest observation horizon
- Agents 2, 3, 4 have the same observation horizon

Figure 4: Instances of scheduling results over 25 time steps in PP

Language of the Agents

- 2D projections of the encoded messages
- Upon observing the prey, agents transmit messages with large variance
- This is because they are implicitly embedding some informative content into the outgoing messages

Figure 5: Encoded messages projected onto 2D plane in PP task

Cooperative Communication and Navigation

- Two agents have different observation horizon
- They are start from one state and must reach a goal state
- They are not aware of their own positions, but they are aware of the other agent's position
- They must guide each other to their respective goal states

Figure 6: Instances of scheduling results over 25 time steps in CCN