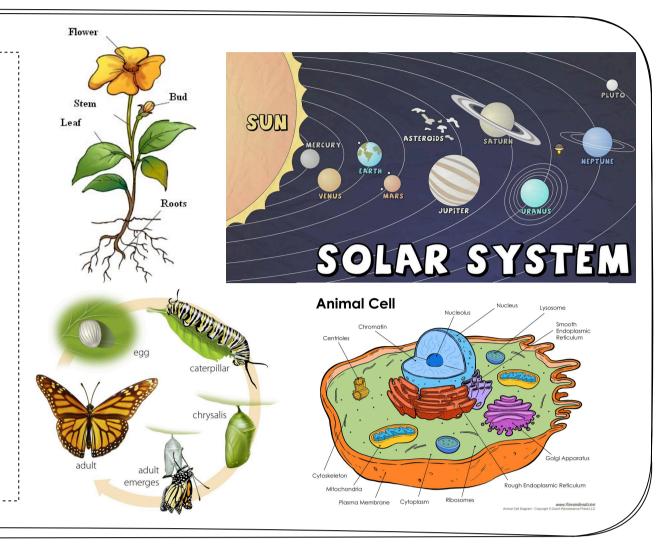
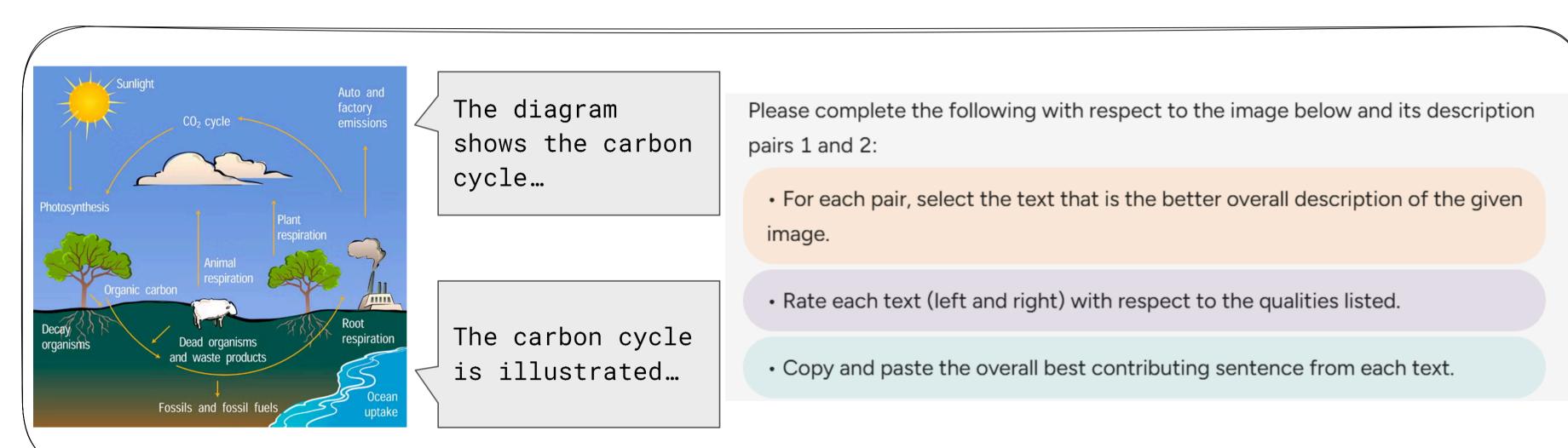


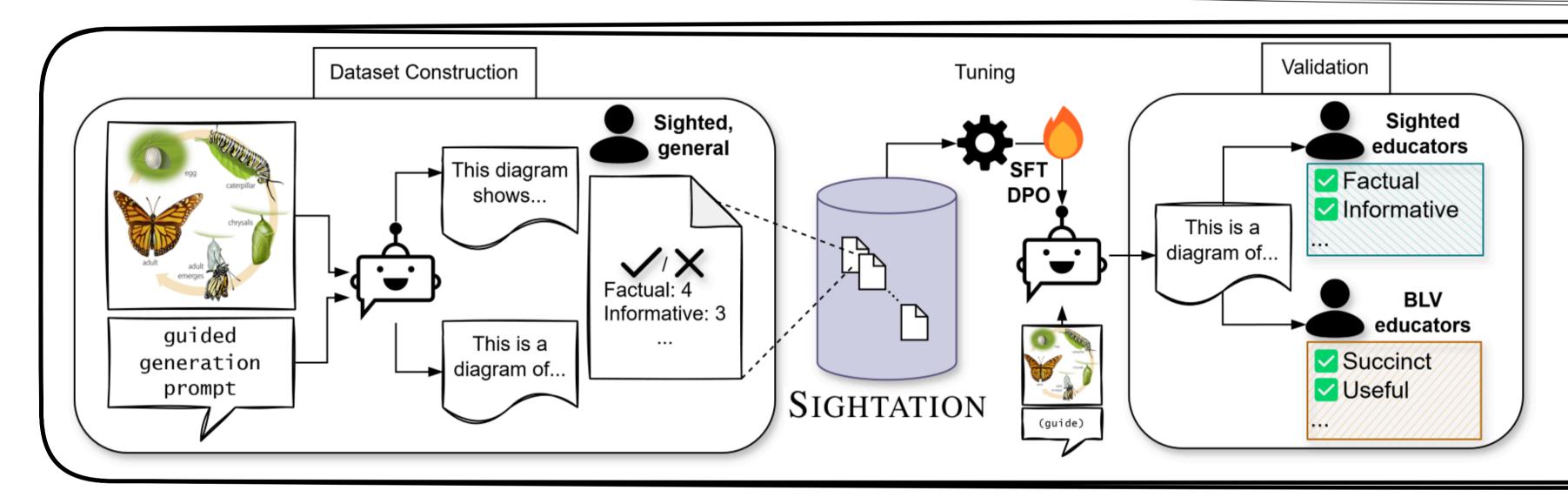
Sightation Counts: Leveraging Sighted User Feedback in Building a BLV-aligned Dataset of Diagram Descriptions

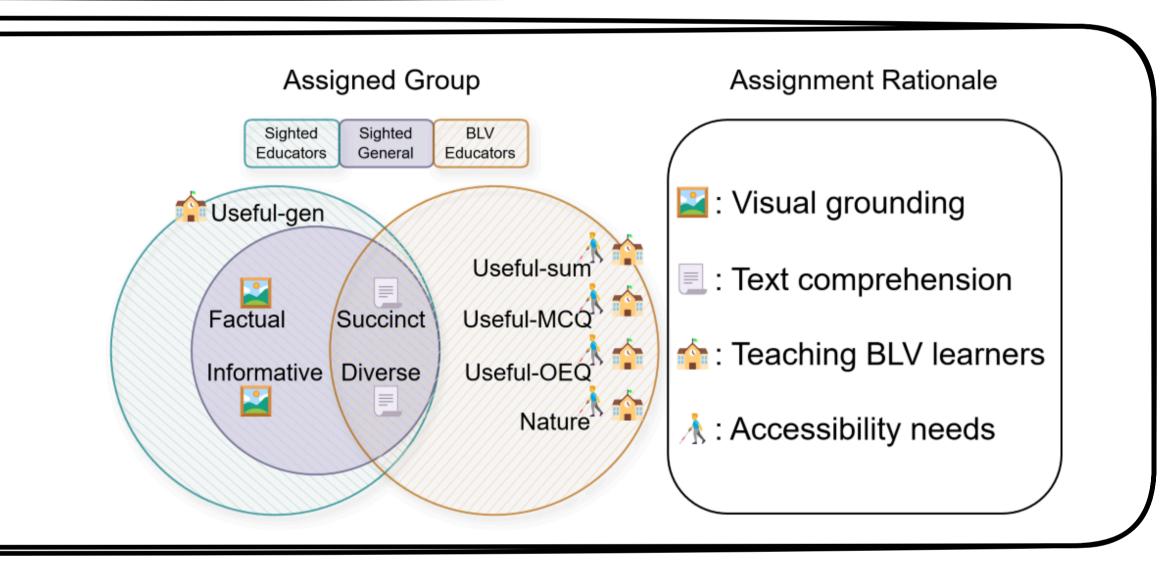
Wan Ju Kang Eunki Kim Na Min An Sangryul Kim Haemin Choi Ki Hoon Kwak James Thorne

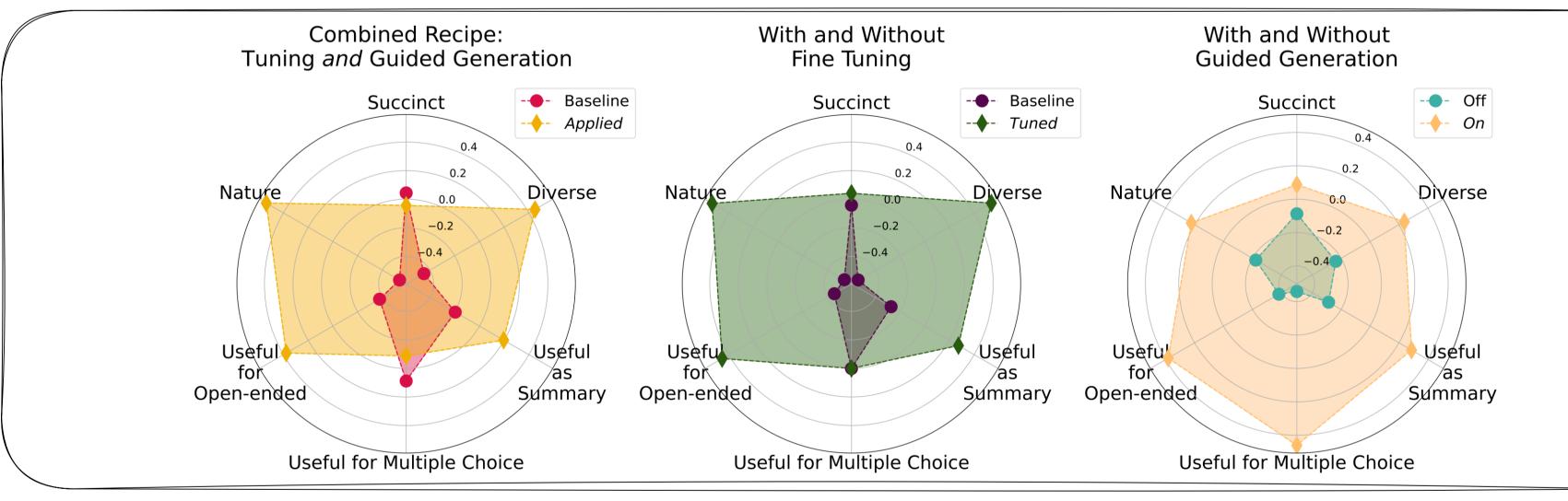

{soarhigh, eunkikim, naminan, sangryul, thorne}@kaist.ac.kr chm1009@g.skku.edu kihoon090@yonsei.ac.kr

The 63rd Annual Meeting of the Association for Computational Linguistics / July 27 - August 1, 2025 / Vienna, Austria


caption: cavendish bananas are the main commercial banana cultivars sold in the world market.


description: grocery store photo of several bunches of bananas




- Existing vision-language models are often trained for generating captions.
- This leaves out blind and low-vision individuals in need of descriptions.
- We created a dataset of diagram descriptions for training VLMs, driving them to generate more BLValigned text.

- We let VLMs generate descriptions then had them assessed by crowdworkers.
- Process leverages sighted user feedback for costeffective, bias-reduced supervision.
- Dataset quality was validated by BLV educators at schools for the blind.

- We trained VLMs on our dataset and measured the effectiveness of the training with BLV and sighted educators across 9 quality aspects.
- Shown are the 6 aspects rated by BLV educators.
- Fine-tuned 2B model shows significant gain in usefulness and diversity.

- We also tested our dataset against existing datasets.
- BLIP2 trained on our data generalizes well to COCO.
- However, COCO-trained BLIP2 performs poorly on our dataset.

							Tested on Our Dataset	Tested on COCO
			2-way Cro	ss-valida	ation of BI	LIP-2	Precision@1	Precision@1
Train set	N/A (Pre	-trained)	CO	CO	SIGHTAT	IONRETRIEVAL (Ours)	0.5	0.8
Test set	COCO	Ours	COCO	Ours	COCO	Ours	Recall@10 Rrecision@5	0.4
Recall@1	0.171	0.048	0.185	0.033	0.180	0.076	0.2	0.2
Recall@5	0.767	0.210	0.831	0.134	0.766	0.348		Recall@5
Recall@10		0.340	_	0.229		0.549		
Precision@1	0.856	0.371	0.924	0.250	0.900	0.585		
Precision@5	0.767	0.324	0.831	0.204	0.766	0.535	Recall@5 Precision@1	0
Precision@10		0.263	_	0.175		0.425	Trained on COCO	Trained on COCO
							Trained on Ours	Trained on Ours
\							Recall@1	Recall@1

	Combined Effect Size			
Aspect	2B	7B		
Succinct	-0.09	1.69		
Diverse	0.90	0.46		
Useful-Sum	0.39	0.53		
Useful-MCQ	-0.18	0.20		
Useful-OEQ	0.76	0.00		
Average	0.36	0.58		
Nature	1.08	-2.38		

	Tuning Effect Size			
Aspect	2B	2B+GG	7B	7B+GG
Succinct	0.06	0.08	0.37	-0.11
Diverse	0.87	1.08	-0.06	0.00
Useful-Sum	0.20	0.55	0.14	0.36
Useful-MCQ	0.29	0.00	-0.54	0.00
Useful-OEQ	1.01	0.90	-0.74	-0.19
Average	0.49	0.52	-0.17	0.01
Nature	1.49	1.06	-3.14	-0.31

	Guided	Generation	Effect Size
Aspect	GPT	2B Base	2B DPO
Succinct	0.18	-0.17	0.17
Diverse	-0.13	-0.13	0.47
Useful-Sum	0.48	-0.17	0.57
Useful-MCQ	0.13	-0.20	0.92
Useful-OEQ	0.76	-0.07	0.77
Average	0.28	-0.15	0.58
Nature	0.33	0.08	3.17

Experiment ID	Assessments for		
Description Generators	Metrics	Desc	Descq2bsft
	CLIP Score	0.450	0.550
	SigLIP Score	0.872	0.940
F	BLIP-2 Retrieval Score	0.511	0.490
Experiment 3c	Self-BLEU	0.305	0.280
CHARTGEMMA (3B)	PAC-Score	0.705	0.716
VS.	LongClip-B	0.316	0.684
FINE-TUNED QWEN2- VL-2B-INSTRUCT	LongClip-L	0.559	0.441
VL 2D INSTRUCT	· VLM-as-a-Judge Evaluation Average	2.951	3.860
	Factuality	3.068	4.119
	Informativeness	2.848	3.967
	Succinctness	3.253	3.925
	Diversity	2 635	3 428

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grants funded by the Korea government (MSIT) (No. RS-2024-00457882, AI Research Hub Project and No.RS-2019-II190075, Artificial Intelligence Graduate School Program (KAIST)) and National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.RS-2024-00406715).

